Implicit-explicit multistep finite element methods for nonlinear parabolic problems

نویسندگان

  • Georgios Akrivis
  • Michel Crouzeix
  • Charalambos Makridakis
چکیده

We approximate the solution of initial boundary value problems for nonlinear parabolic equations. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. One part of the equation is discretized implicitly and the other explicitly. The resulting schemes are stable, consistent and very efficient, since their implementation requires at each time step the solution of a linear system with the same matrix for all time levels. We derive optimal order error estimates. The abstract results are applied to the Kuramoto-Sivashinsky and the Cahn-Hilliard equations in one dimension, as well as to a class of reaction diffusion equations in R , ν = 2, 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linearly Implicit Finite Element Methods for the Time-dependent Joule Heating Problem

We analyze fully discrete methods for the discretization of a nonlinear elliptic-parabolic system. In space we discretize by the finite element method and in time by combinations of rational implicit and explicit multistep schemes. We prove optimal order error estimates.

متن کامل

Stability properties of implicit-explicit multistep methods for a class of nonlinear parabolic equations

We consider the discretization of a special class of nonlinear parabolic equations, including the complex Ginzburg–Landau equation, by implicit–explicit multistep methods and establish stability under a best possible linear stability condition.

متن کامل

Stability of Implicit and Implicit–explicit Multistep Methods for Nonlinear Parabolic Equations

We analyze the discretization of nonlinear parabolic equations in Hilbert spaces by both implicit and implicit–explicit multistep methods and establish local stability under best possible and best possible linear stability conditions, respectively. Our approach is based on suitable quantifications of the non-self-adjointness of linear elliptic operators and a discrete perturbation argument.

متن کامل

Linearly implicit methods for nonlinear parabolic equations

We construct and analyze combinations of rational implicit and explicit multistep methods for nonlinear parabolic equations. The resulting schemes are linearly implicit and include as particular cases implicit-explicit multistep schemes as well as the combination of implicit Runge-Kutta schemes and extrapolation. An optimal condition for the stability constant is derived under which the schemes...

متن کامل

Implicit-explicit multistep methods for quasilinear parabolic equations

Efficient combinations of implicit and explicit multistep methods for nonlinear parabolic equations were recently studied in [1]. In this note we present a refined analysis to allow more general nonlinearities. The abstract theory is applied to a quasilinear parabolic equation. Dedicated to Professor Vidar Thomée on the occasion of his 65 birthday, August 20, 1998

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 67  شماره 

صفحات  -

تاریخ انتشار 1998